

О КОМПАНИИ

2004

Год создания, основная специализация химические насосы

2010

основание совместного российско-итальянского 3A0 «Астерион»-производство предприятия насосов с проточной частью из неметаллических материалов

2013

3АО Астерион — член ассоциации производителей насосов. Разработка и запуск производства мешалок из композитных материалов.

2021

Численность компании более 50 человек

Основное назначение

• Аппараты с мешалками применяются для распределения смешиваемых компонентов и теплоты при перемешивании одно- или многофазных жидких сред, а также для интенсификации тепло- и массопереноса при проведении различных химико-технологических процессов*.

Перемешивание может осуществляться мешалками различных типов. Выбор конструкции и числа мешалок зависит от:

- 1.гидродинамического режима перемешивания (турбулентный или ламинарный)
- 2. технологического назначения аппарата
- 3.соотношений размеров аппаратов.

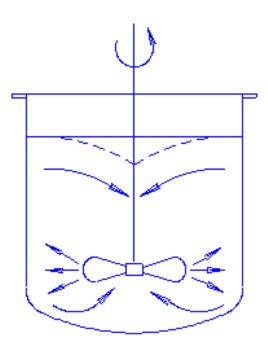
Типы миксеров

2. Рамные

3. Якорные

Различные виды применяемых лопастей

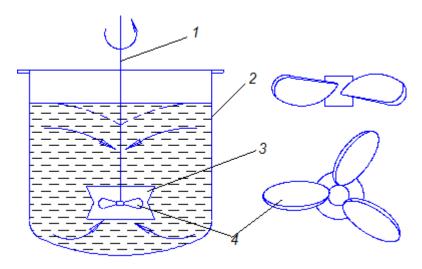
Технологическое назначение аппарата с мешалкой


	Режим	Тип мешалки
Смешение взаиморастворимых жидкостей, в том числе при наличии химической реакции	Турбулентный	Трехлопастная, шестилопастная, лопастная, клетьевая, турбинная, лопастная, трехлопастная с наклонными лопастями, эмалированные мешалки всех типов
	Ламинарный	Ленточная, шнековая, рамная, ленточная со скребками*, якорная эмалированная,
Перемешивание суспензий, растворение, реакции в системе жидкость - твердая фаза	Турбулентный	Лопастная, шестилопастная, турбинная, клетьевая, эмалированные мешалки всех типов
Перемешивание суспензий, растворение, реакции в системе жидкость - твердая фаза при наличии интенсивного теплообмена	Турбулентный	Турбинная, трехлопастная с наклонными лопастями, эмалированная лопастная и трехлопастная
	Ламинарный	Ленточная, шнековая, ленточная со скребками**, якорная эмалированная
Перемешивание несмешивающихся жидкостей, массообмен в системе жидкость - жидкость, в том числе при наличии химической реакции	Турбулентный	Турбинная, шестилопастная, клетьевая, трехлопастная
	Ламинарный	Шнековая, ленточная, рамная, якорная, эмалированная
Перемешивание и массообмен в системах газ-	Турбулентный	Турбинная (в т.ч. многорядная) Эмалированные лопастная и трехлопастная
жидкость, в том числе при наличии химической реакции	Ламинарный	Шнековая, ленточная, рамная, якорная эмалированная

Лопастные мешалки

Лопастные мешалки применяют для перемешивания жидкостей с небольшой вязкостью (до 0,1 Па·с), растворения и суспензирования твердых веществ с малым удельным весом, а также для грубого смешения жидкостей вязкостью меньше 20 Па·с.

- Преимущества. Лопастные мешалки отличаются простотой конструкции. Наиболее просты по устройству мешалки с плоскими лопастями из полосовой или угловой стали, установленные перпендикулярно или наклонно к направлению их движения. Частота вращения таких мешалок колеблется от 18 до 80 об/мин, при увеличении частоты вращения выше указанной эффективность перемешивания резко снижается. Диаметр лопастей составляет 0,7 диаметра сосуда, в котором работает мешалка.
- К недостаткам лопастных мешалок относятся: малая интенсивность перемешивания густых и вязких жидкостей, а также полная непригодность для перемешивания легко расслаивающихся веществ, для быстрого растворения, тонкого диспергирования и получения суспензий, содержащих твердую фазу с большим удельным весом.



Пропеллерные мешалки

Пропеллерные мешалки. Плоские лопасти мешалок, поверхность которых перпендикулярна направлению движения перемешиваемой жидкости, не могут обеспечить хорошего перемешивания во всех слоях жидкости, так как создают в ней главным образом только горизонтальные токи.

- При использовании пропеллерных мешалок в связи с переменным углом наклона поверхности лопасти, частицы жидкости при перемешивании направляются в различных направлениях, в результате возникают встречные токи, способствующие интенсификации перемешивания.
- Пропеллерные мешалки применяют для интенсивного перемешивания маловязких жидкостей, взмучивания осадков, содержащих до 10 % твердой фазы с размерами частиц до 0,15 мм, приготовления суспензий и эмульсий.
- **Недостатки**. Пропеллерные мешалки непригодны для удовлетворительного перемешивания жидкостей значительной вязкости (более 0,6 Па·с) или жидкостей, содержащих твердую фазу высокой плотности.

Материалы используемые для коррозионностойкого оборудования

Материал	Химическая стойкость	Механическая прочность	Термическая стабильность	Bec	Стоимость
Полипропилен +стекловолокно	++	++	+	+++	+++
Полиэфирная эпоксидная смола +стекловолокно	+++	+++	++	+++	+++
Фторопласт + углеволокно	+++	+++	+++	++	+
Сталь нержавеющая	+	+++	+++	+	+

Мешалки из композитных материалов

Внешний вид лопастей Микс L и N

Физико-механические характеристики материалов

	Стеклопластик	ПВХ	Сталь
Плотность, кг/м³	1600-2000	1400	7800
Разрушающее напряжение при сжатии (растяжении), МПа	410	41-48	410-480
Коэффициент теплопроводности, BT/мК	0,3-0,5	0,15- 0,16	46

Химическая стойкость композитного материала

Жидкость	Концентрация	Температура
Соляная кислота	35-36	60
Морская вода 100 100	100	100
Лаурилсульфат натрия	любая	70
Серная кислота	80	40
Фосфорная кислота	100	100
Гидроксид кальция	любая	90
хлорная вода,	Насыщенная Cl₂	65
Азотная кислота	40	25

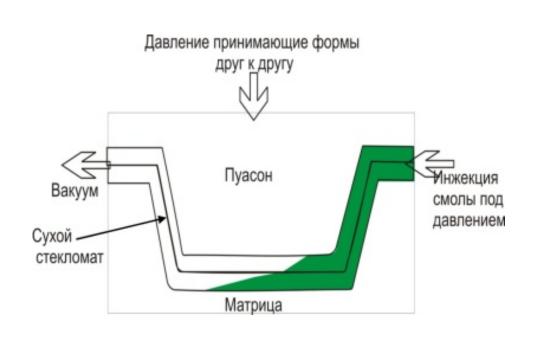
Сравнение веса

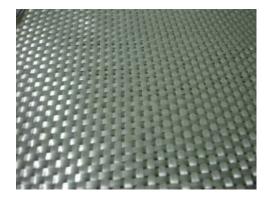
700 гр

250 гр

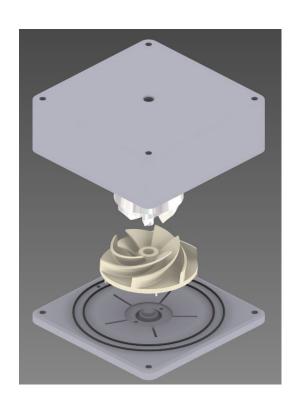
Испытания миксеров на песке

- Время работы: 21 день по 8 часов в день.
- Вид лопастей после испытаний





Технология изготовления деталей из композита





Производство комплектующих из стеклопластика

Мешалки «Астерион» из стеклопластика

- Особенности:
 - высокая удельная прочность
 - высокая химстойкость
 - высокая износостойкость
 - высокая усталостная прочность
 - легкость
 - Модульная конструкция

Длина вала до 7 000 мм Лопасти от 120 до 2600 мм

Типовое обозначение

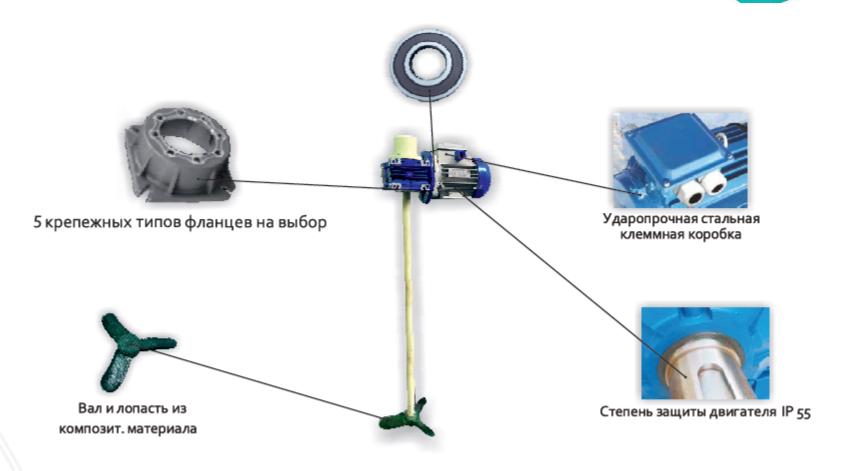
	Типовое обозначение						Опции			
Микс	L	1000	200	186	040	0,37	FA	1ф	EX	УХЛ 4
Серия										
L-тихоходная										
N - быстроходная										
Длина вала		-								
Диаметр лопастей			•							
Количество оборото	OB			-						
Габарит редуктора										
Мощность двигателя										
Тип крепежного фланца										
Однофазный двигатель										
Взрывозащищенный двигатель										
Специальное исполне	ение двиг	ателя								-

Модульная конструкция

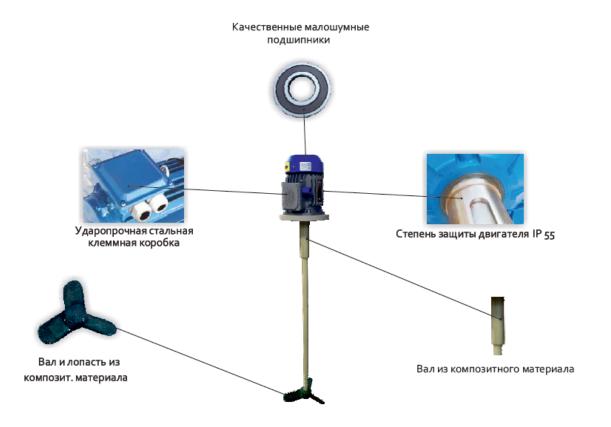
Возможные длины валов, мм

От 300 до 3500

Мощность двигателя от 0,25 до 5,5 кВт


Обороты двигателей (об/мин): 1400, Редукторы с передаточными числами: 5 - 100

Возможные диаметры лопастей: 120, 160, 200, 300, 400, 500 мм


Конструктивные особенности тихоходных Мешалок серии «Микс-L»

Корпус редуктора из Чугуна, порошковая окраска полиэфирной смолой на основетермически отверждаемых порошков.

Конструктивные особенности быстроходных Мешалок серии «Микс-N»

Миксеры для емкостей с комплектом креплений

Лопастные мешалки Астерион Микс L

Лопастные мешалки применяют для перемешивания жидкостей с небольшой вязкостью (до 0,1 Па·с), растворения и суспензирования твердых веществ с малым удельным весом, а также для грубого смешения жидкостей вязкостью меньше 20 Па·с.

- Преимущества. По сравнению с мешалками по ОСТ лопатки повернуты под 45 градусов, что способствует созданию тангенциального потока.
- Недостатки. Малая интенсивность перемешивания жидкостей для быстрого растворения, тонкого диспергирования и получения суспензий, содержащих твердую фазу с большим удельным весом

Основные данные, необходимые для подбора

- Цели перемешивания (диспергирование, эмульгирование, работа в системе газ-жидкость и т.д.)
- Размеры емкости
- Основные реологические свойства: плотность, вязкость и т.д.
- Хим.состав жидкости
- Температура

Выбор миксера Микс L или N

Жидкость	Концентрация
Жидкость - жидкость	Микс L
Жидкость — твердое Растворение	Микс N
Жидкость – твердое Перемешивание, поддержание во взвешенном состоянии	Микс L
Жидкость – твердое	Микс L

Преимущества перед металлическими миксерами

- Высокая химическая стойкость
- Малый вес
- Цельнолитая конструкция (отсутствие сварных швов)

Преимущества перед миксерами из ПП/ПВДФ/ПВХ

- •Отсутствие футеровки, цельная конструкция.
- •Смолы после отверждения в (отличии от термопластичных материалов таких как полипропилен и фторопласт) не подвержены повторному расплавлению, а это гарантия отличной механической прочности, термоустойчивости, формоустойчивости и ,как следствие, продолжительность срока службы миксеров увеличивается.

почему мы?

• Опыт поставок насосного и перемешивающего оборудования с 2004 г.

• Производство и сервисный центр расположены в Санкт-Петербурге, что сокращает скорость поставок и сервисного обслуживания.

• Жесткий контроль качества поставляемой продукции.

• Собственные запатентованные разработки.

Благодарим за внимание!

Более подробная информация по оборудованию ГК «Элма-Астерион» представлена на сайте

http://td-elma.ru/

За техническими консультациями и по вопросам подбора оборудования просим обращаться:

+7 (812)490-75-03 info@td-elma.ru